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Collective Instabilities and Halo Formation of Space-Charge Dominated
Beams in a Particle-Beam Nonlinear-Dynamics Approach

K.Y. Ng, Fermilab∗ P.O. Box 500, Batavia, IL 60510

Abstract
Nonlinear dynamics deals with parametric resonances and
diffusion, which are usually beam-intensity independent
and rely on a particle Hamiltonian. Collective instabilities
deal with beam coherent motion, where the Vlasov equa-
tion is frequently used in conjunction with a beam-intensity
dependent Hamiltonian. We address the questions: Are the
two descriptions the same? Are collective instabilities the
results of encountering parametric resonances whose driv-
ing force is intensity dependent? The space-charge domi-
nated beam governed by the Kapchinskij-Vladimirskij (K-
V) envelope equation [1] is used as an example.

1 INTRODUCTION

Traditionally, the thresholds of collective instabilities are
obtained by solving the Vlasov equation, the dynamics of
which comes from the single-particle wakefield-dependent
Hamiltonian. The Vlasov equation is often linearized so
that the modes of collective motion can be described by a
set of orthonormal eigenfunctions and their corresponding
complex eigenvalues give the initial growth rates. The per-
turbation Hamiltonian ∆H1 may have a time-independent
component, for example, the space-charge self-field that
determines the potential-well distortion of the unperturbed
particle distribution, and the part involving the nonlinear
magnetic fields, that gives rise to the dynamical aperture
limitation. It may also have a time-dependent component,
which includes the time-dependent effects of wakefields
and produces coherent motion of beam particles. The har-
monic content of the wakefields depends on the structure of
accelerator components. If one of the resonant frequencies
of the wakefields is equal to a fractional multiple of the un-
perturbed tune of unperturbed HamiltonianH0, a resonance
is encountered. Depending on the stochasticity of the phase
space, particles may be trapped into the resonant islands or
diffuse towards resonant structures far away forming beam
halos or getting lost. This may result in a runaway situation
such that collective instability is induced.

Experimental measurements indicate that a small time
dependent perturbation can create resonance islands in
the longitudinal or transverse phase space and profoundly
change the bunch structure [2]. For example, a modulating
transverse dipole field close to the synchrotron frequency
can split up a bunch into beamlets. Although these phe-
nomena are driven by beam-intensity independent sources,
they can also be driven by the space-charge force and/or
the wakefields of the beam which are intensity dependent.
Once perturbed, the new bunch structure can further en-
hance the wakefields inducing even more perturbation to
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the circulating beam. Experimental observation of hystere-
sis in collective beam instabilities seems to indicate that res-
onance islands have been generated by the wakefields.

For example, the Keil-Schnell criterion [3] of longitudi-
nal microwave instability can be derived from the concept
of bunching buckets, or islands, created by the perturbing
wakefields. Particles in the beam will execute synchrotron
motion inside these buckets leading to growth in the mo-
mentum spread of the beam. In fact, the collective growth
rate is exactly equal to the angular synchrotron frequency
inside these buckets. If the momentum spread of the beam
is much larger than the bucket height, only a small fraction
of the particles in the beam will be affected and collective
instabilities will not occur. This mechanism has been called
Landau damping.

As a result, we believe that the collective instabilities of a
beam may also be tackled from a particle-beam nonlinear-
dynamics approach, with collective instabilities occurring
when the beam particles are either trapped in resonance is-
lands or diffuse away from the beam core because of the
existence of a sea of chaos. The advantage of the particle-
beam nonlinear-dynamics approach is its ability to under-
stand the hysteresis effects and to calculate the beam dis-
tribution beyond the threshold condition. Such a procedure
may be able to unify our understanding of collective insta-
bilities and nonlinear beam dynamics. Here, the stability is-
sues of a space-charge dominated beam in a uniformly fo-
cusing channel are considered as an example [4].

2 ENVELOPE HAMILTONIAN

First, the envelope Hamiltonian is normalized to unit emit-
tance and unit period. In terms of the normalized and di-
mensionless envelope radiusR, together with its conjugate
momentum P , the Hamiltonian for the beam envelope in a
uniformly focusing channel can be written as [5, 6]

He =
1

4π
P 2 + V (R) , (2.1)

V (R) =
µ2

4π
R2 − µκ

π
ln

R

R0
+

1
4πR2

, (2.2)

where µ/(2π) is the unperturbed particle tune, κ =
Nrcl/(µβ2γ3) the normalized space-charge perveance, N
the number of particles per unit length having classical ra-
dius rcl, and β and γ the relativistic factors of the beam. The
normalized K-V equation then reads

d2R

dθ2
+
( µ

2π

)2

R =
2µκ

4π2R
+

1
4π2R3

. (2.3)

The radiusR0 of the matched beam envelope or core occurs
at the lowest point of the potential; i.e., V ′(R0) = 0, or

µR2
0 =

√
κ2 + 1 + κ =

1√
κ2 + 1− κ

. (2.4)

From the second derivative of the potential, the small am-
plitude tune for envelope oscillations is therefore



Figure 1: Envelope tune Qe versus envelope mismatch
Rmax/R0 for various space-charge perveance κ. Notice
that Qe is represented by νe at Rmax/R0 = 1 when the
beam envelope is matched.

νe=
2µ
2π

[
1−κ

(√
κ2+1−κ

)]1/2
(2.5)

which approaches µ/π and
√

2µ/(2π) as κ approaches 0
and∞, respectively.

For a mismatched beam, R varies between Rmin and
Rmax. To derive the tune of the mismatched envelope, it
is best to go to the action-angle variables (Je, ψe). The en-
velope tune and action are then

Qe=
dEe
dJe

=νe+αeJe+· · · , Je=
1

2π

∮
PdR . (2.6)

where Ee is the Hamiltonian value of the beam envelope,
and the detuningαe, defined byHe = νeJe+ 1

2αeJ
2
e +· · · ,

is computed to be

αe=
3

16π3R4
0ν

2
e

[
µκ+

5
R2

0

]
− 5

48π5R6
0ν

4
e

[
µκ+

3
R2

0

]2

+· · · .

To obtain the envelope tune for large mismatch, one must
compute numerically the action integral to obtain

Qe =
dEe
dJe

= 2π
[∮

∂P

∂Ee
dR

]−1

, (2.7)

The envelope tune is plotted in Fig. 1 as a function of the
maximum envelope radius Rmax, which, for small mis-
match, is related to the envelope action Je by

R = R0 +
(
Je
πνe

)1/2

cosQeθ . (2.8)

3 COLLECTIVE-MOTION APPROACH

Gluckstern, Cheng, Kurennoy, and Ye [7] have studied the
collective beam stabilities of a space-charge dominated K-
V beam in a uniformly focusing channel. The particle dis-
tribution f is separated into the unperturbed distributionf0

and the perturbation f1:

f(u, v, u̇, v̇ ; θ)=f0(u2+v2 +u̇2 +v̇2)+f1(u, v, u̇, v̇ ; θ) ,

where u and v are the normalized transverse coordinates
which are functions of the ‘time’ variable θ. Their deriva-
tives with respect to time are denoted by u̇ and v̇. The un-
perturbed distribution,

f0(u2 + v2 + u̇2 + v̇2)=
I0
v0π2

δ(u2 + v2 + u̇2 + v̇2− 1) ,

is the steady-state solution of the K-V equation (2.3) and
is therefore time-independent. In the notation of Gluck-
stern, Cheng, Kurennoy, and Ye, I0 is the average beam cur-
rent and v0 the longitudinal velocity of the beam particles.
The perturbed distributiongenerates an electric potentialG,
which is given by the Poisson’s equation

∇2G(u, v, θ) = − 1
ε0

∫
du̇

∫
dv̇f1(u, v, u̇, v̇ ; θ) , (3.1)

so that the Hill’s equations in the two transverse planes
become

ü+ u = − eβ

m0v
2
0ε

∂G

∂u
, v̈ + v = − eβ

m0v
2
0ε

∂G

∂v
, (3.2)

where ε stands for the transverse emittance of the beam and
m0 the rest mass of the beam particle.

For small perturbation, the perturbation distribution is
proportional to the derivative of the unperturbed distribu-
tion. This enables us to write

f1(u, v, u̇, v̇; θ)=g(u, v, u̇, v̇; θ)f ′0(u2+v2+u̇2+v̇2) . (3.3)
Substituting into the linearized Vlasov equation, we obtain

∂g

∂θ
+u̇

∂g

∂u
+v̇

∂g

∂v
−u∂g

∂u̇
−v ∂g

∂v̇
=

2eβ
m0v2

0ε

[
u̇
∂G

∂u
+v̇

∂G

∂v

]
.

(3.4)
Noting that the potential G is a polynomial, Gluckstern,
et. al. are able to solve for g and G consistently in terms
of hypergeometric functions. Thus a series of orthonor-
mal eigenmodes are obtained for the perturbed distribution
with their corresponding eigenfrequencies. These modes
are characterized by (j,m), where j is the radial eigennum-
ber and m the azimuthal eigennumber.

For the azimuthally symmetric m = 0 modes, (1,0) is
the breathing mode of uniform density at a particular time
while the (2,0) mode oscillates with a radial node between
R = 0 and R = R0 so that the density becomes nonuni-
form. The higher modes are similar, with mode (j, 0) hav-
ing j−1 radial nodes. When the eigenfrequency of a mode
is complex, the mode becomes unstable with a collective
growth rate. Stability is studied in terms of tune depres-
sion η=

√
κ2+1−κ and the amount of envelope mismatch.

The former is defined as the ratio of the particle tune with
space charge to the particle tune without space charge for a
matched beam. Thus η ranges from 0 to 1; η = 1 implies
zero space charge while η = 0 implies infinite space charge.

Gluckstern, et. al. showed that mode (1,0) is stable for
any mismatch and tune depression. Mode (2,0) becomes
unstable at zero mismatch when the tune depression η <
1/
√

17 = 0.2435. It is also unstable when the mismatch
is large. This is plotted in Fig. 2 with the stable regions
of modes (2,0), (3,0), and (4,0) enclosed, respectively, by
the solid, dashed, and dot-dashed curves, a reproduction of
Ref. 4. These latter two modes become unstable at zero mis-
match when the tune depressions are less than 0.3859 and
0.3985, respectively. They found that the modes become
more unstable as the number of radial nodes increases.
Among all the azimuthals, they noticed that the azimuthally
symmetric modes (m=0) are the most unstable.



Figure 2: Beam stability plot versus particle tune depres-
sion η and beam envelope mismatch. The stability regions
for modes (2,0), (3,0) and (4,0) are enclosed, respectively,
by the solid, dashed, and dot-dashed curves. (Reproduced
from Ref. 4).

4 PARTICLE-BEAM APPROACH

4.1 Particle Hamiltonian
We want to investigate whether the instability regions in the
plane of tune depression and mismatch can be explained
by nonlinear parametric resonances. First, let us study the
transverse motion of a particle having zero angular momen-
tum. The situation of finite momentum will be discussed
later in Sec. 6. We choose y as the particle’s transverse co-
ordinate with canonical angular momentum py. Its motion
is perturbed by an azimuthally symmetric oscillating beam
core of radius R. The particle Hamiltonian is [6]

Hp =
1

4π
p2
y +

µ2

4π
y2 − 2µκ

4πR2
y2 Θ(R − |y|)

−2µκ
4π

(
1 + 2 ln

|y|
R

)
Θ(|y| − R) , (4.1)

giving the equation of motion for y,

d2y

dθ2
+
( µ

2π

)2

y=
µκ

2π2R2
yΘ(R−|y|)+ µκ

2π2|y| Θ(|y|−R) .

(4.2)
For a weakly mismatched beam, the envelope radius isR =
R0+∆R cosQeθ. The particle Hamiltonian can also be ex-
panded in terms of the equilibrium envelope radius R0, re-
sultingHp=Hp0+∆Hp. The unperturbed Hamiltonian is

Hp0 =
1

4π
p2
y +

µ2

4π
y2 − 2µκ

4πR2
0

y2 Θ(R0 − |y|)

−2µκ
4π

(
1+2 ln

|y|
R0

)
Θ(|y| −R0) , (4.3)

and the perturbation

∆Hp ≈ −
µκ

πR2
0

[
∆R
R0

(y2 −R2
0)

+
3∆R2

2R2
0

(
y2 − 1

3
R2

0

)
+ · · ·

]
Θ(R0−|y|) . (4.4)

Note that many non-contributing terms, like the ones in-
volving the δ-function and δ′-function, have been dropped.
Additionally, envelope oscillations do not perturb particle

motion outside the envelope radius; thus the perturbing po-
tential in Eq. (4.4) exists only inside the envelope.

For a matched beam, ∆Hp = 0. Inside the core of uni-
form distribution, the particle motion is linear and its tune
can be readily obtained:

νp =
µ

2π

(
1− 2κ

µR2
0

)1/2

=
µ

2π

(√
κ2 + 1− κ

)
.

Thus, η =
√
κ2 + 1− κ is the tune depression.

When the particle spends time oscillating outside the
beam envelope, its tune has to be computed numerically.
First, the particle action is defined as

Jp =
1

2π

∮
pydy . (4.5)

The particle tune Qp is then given by

Qp =
dEp
dJp

= 2π
[∮

∂py
∂Ep

dy

]−1

, (4.6)

where Ep is the Hamiltonian value of the beam particle.
The result is shown in Fig. 3 for various space-charge per-
veance κ. We see that when the particle motion is com-
pletely inside the beam envelope (Jp < 1

2 ), the particle tune
is a constant and is given by νp depending on κ only. As
the particle spends more and more time outside the beam
envelope, its tune increases because the space-charge force
decreases as y−1 outside the envelope.

4.2 Particle Tune Inside a Mismatched Beam
To simplify the algebra, it is advisable to scale away the un-
perturbed particle tune µ/(2π) through the transformation:
µR2 → R2, µy2→ y2, and µθ/(2π) → θ. The envelope
and particle equations become

d2R

dθ2
+ R =

2κ
R

+
1
R3

, (4.7)

d2y

dθ2
+ y − 2κ

R2
yΘ(R−|y|)− 2κ

y
Θ(|y|−R) = 0 . (4.8)

For one envelope oscillation period, the envelope radius R
is periodic and Eq. (4.8) inside the envelope core becomes
a Hill’s equation with effective field gradient K(θ) = 1−
2κ/R2(θ). The solution is then exactly the same as the Flo-
quet transformation by choosing y = aw(θ) cos [ψ(θ) + δ].

Figure 3: Particle tune Qp as function of particle action Jp
and space-charge perveance κ for a matched beam.



It is easy to show that the differential equation for w is ex-
actly the envelope equation of Eq. (4.7). Thus we can re-
place w byR, andR2 becomes the effective betatron func-
tion. Since the particle makes Qp/Qe betatron oscillations
during one envelope fluctuation period, whereQp is the par-
ticle tune, we have

Qp
Qe

=
∆ψ
2π

=
1

2π

∮
dθ

R2(θ)
. (4.9)

In Floquet’s notation, with ŷ = y/R, Eq. (4.2) describ-
ing the motion of a particle modulated by a beam envelope
becomes

d2ŷ

dψ2
+ ŷ + 2κR2

[
ŷ2 − 1
ŷ

]
Θ (|ŷ| − 1) = 0 . (4.10)

Thus, all particles inside the beam envelope have a fixed
tune depending on the amount of space charge and envelope
mismatch. Particles spending part of the time outside the
beam envelope will have larger tunes. The Floquet trans-
formation can also be accomplished by a canonical trans-
formation employing the generating function

F2(y, p̂y; θ) =
yp̂y
R(θ)

+
yR′(θ)
2R(θ)

, (4.11)

where the prime denotes derivative with respect to θ. The
new Hamiltonian in the Floquet coordinates becomes

Ĥp(ŷ, p̂y; θ)=
1

R2(θ)
(ŷ2 +p̂2

y)+κ(ŷ2−ln ŷ2) Θ(|ŷ|−1) .

(4.12)
For a small mismatch core fluctuation, we can writeR =

R0(1−M cosQeθ), whereM can be interpreted as the mis-
match parameter. The integral in Eq. (4.9) can be performed
analytically to give

Qp =
νp

(1−M2)3/2
, (4.13)

where νp = R−2
0 =

√
κ2+1 − κ is the particle tune

when the envelope is matched. The analytic formula of
Eq. (4.13), however, is only valid when the mismatch pa-
rameter M . 0.2. The reason is that the envelope equation
is nonlinear in the presence of space charge. In other words,
while minimum envelope radius is given by Rmin = (1−
M)R0, the maximum envelope radius is always Rmax >
(1 + M)R0. In fact, when M → 1, Rmin → 0, but
Rmax → ∞. This can be seen in top plot of Fig. 4 with
(Rmax − R0)/R0 versus M = (R0 − Rmax)/R0. If the
envelope oscillations were symmetric about R0, the plot
would follow the 45◦ dashed line instead. We see that the
deviation is large when the mismatch and tune depression
are large. When the approximationR = R0(1−M cosQeθ)
breaks down, the particle tune can still be easily evaluated
by performing the integral in Eq. (4.9) numerically. The
lower plot of Fig. 4 shows the deviation of the actual par-
ticle tune Qp from its analytic formula of Eq. (4.13).

5 PARAMETRIC RESONANCES

Particle motion is modulated by the oscillating beam enve-
lope. Therefore, to study the resonance effect, we need to
include the perturbation part ∆Hp of the particle Hamilto-
nian. We expand it as a Fourier series in the angle variable
ψp yielding, for example,

Figure 4: Top: (Rmax−R0)/R0 vsM = (R0−Rmax)/R0

showing the large asymmetric envelope oscillation about
the equilibrium radiusR0 when both the mismatch and tune
depression are large. Bottom: Deviation of the actual parti-
cle tuneQp from the value given Eq. (4.13) in the presence
of mismatch.

(y2 − R2
0) Θ(R0 − |y|) =

∞∑
n=−∞

Gn(Jp)einψp . (5.1)

Since ∆Hp is even in y, only even n harmonics survive.
The particle Hamiltonian then becomes

Hp = Hp0+
µκ

2πR2
0

∞∑
m=1

∑
n>0
even

(m+1)Mm|Gnm| ×

×
∑
i=±1

cos(nψp+imQeθ+γn) + · · · , (5.2)

where γn are some phases and use has been made of R =
R0(1−M cosQeθ), the approximation for small mismatch.

Focusing on the n:m resonance, a canonical transforma-
tion to the resonance rotating frame (Ip, φp) gives

〈Hp〉 = Ep(Ip)− m

n
QeIp + hnm(Ip) cos nφp , (5.3)

with the effective κ-dependent resonance strength

hnm =
(m+ 1)Mmµκ

2πR2
0

|Gnm(Ip)| . (5.4)

As usual, there are n stable and n unstable fixed points
which can be found easily. Since ∆Hp is a polynomial up
to y2 only and y ∝ sinψp, we have, inside the envelope,

Gnm =
1

4πQe
Jpδn2 , (5.5)

implying that only 2:m resonances are possible. Outside the
envelope the resonance driving strengths can also be com-
puted, and are plotted in Fig. 5. We see that although the



Figure 5: Plot of driving strengths of first-order resonances
Gn1 versus particle action Jp. Inside the envelope (Jp< 1

2
),

only G21 is nonzero. Once outside the envelope, however,
|Gn1| for n ≥ 2 increases rapidly from zero.

driving strengthsGn1 for n > 2 vanish inside the envelope
(Jp < 1

2
), they increase rapidly once outside. Including

noises of all types, particles inside the K-V beam envelope
can leak out. This situation is particularly true when the par-
ticle tune is equal to a fractional multiple of the envelope
tune. A small perturbation may drive particles outside the
beam envelope. Once outside, because of the nonvanishing
driving strengths, these particles may be trapped into reso-
nance islands or diffuse into resonances farther away. Once
trapped or diffused, they cannot wander back into the enve-
lope core. As more and more envelope particles leak out,
the core stabilization is lost and an instability occurs.

Our job is, therefore, to map out the location of para-
metric resonances in the plane of mismatch and tune de-
pression. Because particles are affected only by resonances
when they are just outside the envelope core, their tunes are
essentially the tune inside the beam envelope. At zero mis-
match, the threshold for then:m resonance can therefore be
derived by equating νp/νe to m/n. Thus

νp
νe

=
√
κ2+1−κ

2
[
1−κ

(√
κ2+1−κ

)]1/2 ≤ m

n
, (5.6)

or

κ ≥

( n
m

)2

−4√
8
[( n
m

)2

−2
] . (5.7)

In particular, for the 6:1 resonance, κ≥8/
√

17=1.9403, or
the tune depression is η≤ 1/

√
17 = 0.2425, which agrees

with Gluckstern’s instability threshold for mode (2,0).
For a mismatched beam, the threshold for the n:m reso-

nance is obtained by equating Qp/Qe at that mismatch to
m/n. These resonances are labeled in Fig. 6 in the plane of
tune depression and mismatch. The locus of the 2:1 reso-
nance is the vertical line η = 1. This is obvious, because
at zero space charge the particle tune is exactly two times
the envelope tune regardless of mismatch. Also, it is clear
from Eq. (4.10) that there will not be any Mathieu instabil-
ity or half-integer stop-band [8]. Thus it appears that the

Figure 6: Plot of parametric resonance locations in the
plane of tune-depression and beam envelope mismatch.
First-order resonances are shown as solid while second- and
higher-order resonances as dashes. Overlaid on top are the
instability boundaries of modes (2,0), (3,0), and (4,0) de-
rived by Gluckstern, et. al.

2:1 resonance would not influence the stability of a space-
charge dominated beam. This is, in fact, not true. The stable
fixed points of the 2:1 resonance are usually far away from
the beam envelope. Thus particles can diffuse towards the
2:1 resonance to form beam halo. As more and more par-
ticles continue to diffuse from the beam core into the 2:1
resonance, the beam becomes unstable.

Trackings have been performed for particles outside the
envelope core using the fourth-order symplectic integration
developed by Forest and Berz [9]. The Poincaré surface
of section is shown in Fig. 7A for the situation η = 0.20
(κ=2.4) and M=0.3, corresponding to Points A in Fig. 6.
The innermost torus is the beam envelope. The sections
are taken every envelope oscillation period when the enve-
lope radius is at a minimum. For each envelope oscillation
period, 500 to more than 1000 time steps have been used.
We see that as soon as particles diffuse outside the beam
envelope, they will encounter the 6:1 resonance, which is
bounded by tori. This explains the front stability bound-
ary of Gluckstern’s mode (2,0). Since the 4:1 resonance is a
strong one, its locus explains the front stability boundaries
of Gluckstern’s (3,0) and (4,0) modes also.

The Poincaré surface of section corresponding to
Points B of Fig. 6 with η = 0.10 (κ = 4.95) M = 0.15 is
shown in Fig. 7B. This is a close-up view showing only
the region near the beam envelope; the 2:1 resonance and
its separatrices are not shown because they look similar
to those depicted in Fig. 7A. We see resonances like 14:2,
8:1, 16:2, 9:1, 10:1, etc, which are so closely spaced
that they overlap to form a chaotic region. Particles that
diffuse outward from the beam envelope will wander easily
towards the 2:1 resonance along its separatrix. This region,
where η . 0.2, is therefore very unstable.

Figure 7C shows the close-up Poincaré surface of sec-
tion of Points C in Fig. 6 with η = 0.44 (κ = 0.916) and
M = 0.25. Here the particles see many parametric reso-



A B C

D E F

Figure 7: Poincaré surface of section in particle phase space (y, p). Plot A is with (η,M)=(0.20, 0.30), Plot B (0.10, 0.15),
Plot C (0.44, 0.25), Plot D (0.30, 0.10), Plot E (0.50, 0.60), Plot F (0.90, 0.10), corresponding, respectively, to Points A,
B, C, D, E, F in Fig. 6. The last 5 are close-up plots, showing only up to the unstable fixed points and internal separatrices
of the 2:1 resonance.

nances when they are outside the beam envelope; first the
10:3, followed by the 6:2, 8:3, 10:4, and then a chaotic layer
going towards the 2:1 resonance. The resonances are sepa-
rated by good tori and the instability growth rate should be
small. Thus, this is the region on the edge of instability.

On the other hand, the Poincaré surface of section in
Fig. 7D corresponding to Points D of Fig. 6 with η = 0.30
(κ = 1.517) and M = 0.10 shows the 6:2 resonance well
separated from the 10:4 resonance with a wide area of good
tori. Also the width of the 10:4 resonance is extremely nar-
row so that particles can hardly be trapped there. Unlike the
situation in Figs. 7B and 7C, there is no chaotic region at the
unstable fixed points and inner separatrices of the 2:1 reso-
nance, making diffusion towards this resonance impossible.
This region will be relatively stable.

Next consider the region with very large beam envelope
mismatch like Points E of Fig. 6 with η = 0.50 (κ = 0.75)
and M = 0.60. (The other Point E is at Rmax/R0 = 2.067
and is therefore not visible in Fig. 6). The close-up Poincaré
surface of section in Fig. 7E shows the beam envelope ra-
dius at y = 0.566 when py = 0. We can see that the un-
stable fixed points and the inner separatrices of the 2:1 res-
onance are very close by and are very chaotic. As soon as
a particle diffuses out to y = 0.62, it reaches the chaotic
sea and wanders towards the 2:1 resonance. Because the
chaotic region is so close to the beam envelope, this region
of large mismatch is also unstable, which is Gluckstern’s re-
gion of instability at large mismatch.

Finally, we look at Points F of Fig. 6, which have small
space charge κ = 0.0106 or η = 0.90 and small mis-
match M=0.10. The Poincaré surface of section is shown
in Fig. 7F. The beam envelope is surrounded by good tori
far away from the separatrices of the 2:1 resonance and no

parametric resonances are seen. This is evident also from
Fig. 6 that this region is not only free from primary reso-
nances but also many higher-order resonances. The unsta-
ble fixed points and the separatrices of the 2:1 resonance
are well-behaved and not chaotic. Thus, these points are
very stable. If we keep the same space-charge perveance
and increase the amount of envelope mismatch, we also do
not see in the Poincaré surface of section any parametric
resonances between the beam envelope and the separatri-
ces for the 2:1 resonance. However, although the separatri-
ces of the 2:1 resonance are not chaotic, they become closer
and closer to the beam envelope. When the separatrices are
too close, particles that are driven by a small perturbation
away from the beam envelope will have a chance of travel-
ing along the separatrices of the 2:1 resonance to form beam
halo. From our discussions, it is clear that to avoid insta-
bility and halo formation, the beam should have small mis-
match and be in a region that is far away from parametric
resonances in the plane of mismatch and tune depression.
The best solution for stability is certainly when the beam
has small mismatch and small space-charge perveance.

The deep fissures of the (2,0) mode near η=4.7 and 5.3
in Fig. 2 or 6 are probably the result of encountering the
10:3 and 6:2 parametric resonances. The width of the fis-
sures should be related to the width of the resonance islands,
which can be computed in the standard way. In general, a
lower-order resonance island, like the 4:1, is much wider
than a higher-order resonance island, like the 6:1.

We tried very hard to examine the region between the 4:1
and 10:3 resonances with a moderate amount of mismatch.
We found this region very stable unless it is close to the 10:3
resonance. We could not, however, reproduce the slits that
appear in Gluckstern’s (4,0) mode.



6 ANGULAR MOMENTUM

Most K-V particles have nonzero angular momentum.
When angular momentum is included in the discussion, we
first extend the particle Hamiltonian of Eq. (4.12) in Floquet
notations to both the x and y transverse planes:

Ĥp =
1

2R2
(x̂2 + ŷ2 + p̂2

x + p̂2
y)

+κ[x̂2 + ŷ2− ln (x̂2 + ŷ2)] Θ(x̂2 + ŷ2−1) . (6.1)
It is preferable to use the circular coordinates (r̂, ϕ) as in-
dependent variables; their canonical momenta are, respec-
tively, p̂r and p̂ϕ. The particle Hamiltonian becomes

Ĥp=
1

2R2

(
r̂2+p̂2

r+
p̂2
ϕ

r̂2

)
+κ(r̂2−ln r̂2) Θ(r̂−1) , (6.2)

where r̂2 = x̂2 + ŷ2 and(
p̂r
p̂ϕ/r̂

)
=
(

cosϕ sinϕ
− sinϕ cosϕ

)(
p̂x
p̂y

)
. (6.3)

Extending the generating function in Eq. (4.11) to include
the x coordinates, it is straightforward to show
r = R r̂ and p̂ϕ = x̂p̂y − ŷp̂x = xpy − ypx . (6.4)

Thus p̂ϕ is the angular momentum of the particle, which is a
constant of motion. Since it has the same functional form in
both coordinate systems, its overhead accentˆwill no longer
be necessary. Particles belonging to the unperturbed K-V
distribution are therefore subjected to the restriction

r̂2 + p̂2
r +

p2
ϕ

r̂2
= 1 , (6.5)

from which we obtain

r̂2 =
1− p̂2

r

2
+

[(
1− p̂2

r

2

)2

− p2
ϕ

]1/2

. (6.6)

Thus a K-V particle has an angular momentum restricted by

|pϕ| ≤
|1− p̂2

r |
2

≤ 1
2
, (6.7)

which agrees with the result of Riabko [6] that 2Jr+|pϕ| =
1
2 , where Jr is the radial action. The equation of motion for
the particle radial position inside the beam core is

d2r̂

dψ2
+ r̂ −

p2
ϕ

r̂3
= 0 , (6.8)

where the Floquet phase advance dψ = dθ/R2 has been
used. Notice that this is exactly the same as the envelope
equation in Eq (4.7) with κ = 0. We proved in Sec. 2 that
the envelope tune is exactly twice the particle tune when
κ→ 0. Hence, comparing with the equation of motion of a
zero-angular-momentum particle in the presence of a mis-
matched space-charge dominated beam, i.e., Eq. (4.10), we
can conclude that the particle radial tune inside the beam
core is exactly twice the zero-angular-momentum particle
tune for any space charge and mismatch.

Simulations have been performed for the time evolution
of the radial motion of a beam particle and then compared
with the time evolutionof the transverse motion of a particle
with zero momentum. One of the simulations is shown in
the upper plot of Fig. 8. The particle is a K-V particle with
angular momentum pϕ = 0.3 satisfying the K-V restriction
of Eq. (6.6) in a mismatched beam envelope withM = 0.30

Figure 8: Plots showing the time evolution of the radial po-
sition r of a K-V particle in solid inside a beam envelope
with nonzero pϕ, mismatch M = 0.30 and κ = 2.059
(η = 0.23). The evolution y of a pϕ = 0 particle is shown
in dashes. The simulation is at the 6:1 resonance for the
pϕ = 0 particle. Top plot shows the radial motion with
pϕ = 0.30 which is twice as fast as the oscillating motion
of a pϕ = 0 particle. Lower plot is for pϕ = 0.50. Now
the particle radius r is related to the envelope radius R by
r =

√
|pϕ|R = R/

√
2, giving a false impression that the

radial tune becomes equal to the envelope tune.

having a tune depression of η = 0.23. We see that the shape
of oscillations of r shown as solid is very similar to that of
y with zero angular momentum shown as dashes. Since r
does not go negative, its tune appears to be twice the tune
of a zero-angular-momentum particle. This plot was per-
formed near a 6:1 resonance for a zero-angular-momentum
particle and it therefore translates into a 3:1 resonance for a
nonzero-angular-momentum particle.

It is interesting to point out that as |pϕ| → 1
2

, the
humps that exhibit in the time evolution of the radial mo-
tion become more pronounced and the time evolution even-
tually becomes proportional to the envelope oscillation, as
is demonstrated in lower plot of Fig. 8. Now the radial tune
appears to change suddenly to the envelope tune instead. In
fact, this is easy to understand. The equation of motion for
the particle radial position is

r′′ + r =
2κ
R2

r +
pϕ
r3

. (6.9)

Compared with the envelope equation (4.7), it is evident
that r =

√
|pϕ|R is a solution. In the Floquet represen-

tation, Eq. (6.8) also reflects such a solution. Thus, it is
apparent that the radial tune can assume two different val-



ues. This ambiguity can be resolved by investigating the
Poincaré surface of section of the radial motion. In the Flo-
quet coordinates, the trajectory is represented by one point,
r̂ =

√
|pϕ| and p̂r = 0. In the (r, pr) coordinates, the

Poincaré surface of section is also a single point since the
phase-space position of the particle is plotted only every en-
velope period. In fact, from Eq. (6.2), the Hamiltonian in
the Floquet representation, it is clear that the solution r̂ =√
|pϕ| is the lowest point of the radial potential. This is the

equilibrium solution which, in the case of a Hill’s equation,
is equivalent to a particle traveling along an orbit passing
through the centers of all elements. Therefore, even in this
solution, the radial tune is not equal to the envelope tune,
but remains twice the tune in the Cartesian coordinates.

Because of the above discussion, all the n:m parametric
resonances that we studied in Sec. 5 just translate into the
n
2 :m resonances in a r-pr Poincaré surface of section. As
a result, the stability investigation in the previous section
should hold even when particles with finite angular momen-
tum are included.

7 CONCLUSIONS

We have now an interpretation of the collective instabili-
ties in the plane of envelope mismatch and tune depression
through the particle-beam nonlinear-dynamics approach.
Because of the existence of noises of all types in the acceler-
ators and the K-V equation is far from realistic, some parti-
cles will diffuse away from the K-V distribution. Although
these particles may encounter parametric resonances once
outside the beam core, an equilibrium will be reached if
these resonances are bounded by invariant tori. It may hap-
pen that the island chains outside the beam envelope are so
close together that they overlap to form a chaotic sea. When
the last invariant torus breaks up, particles leaking out from
the core diffuse towards the 2:1 resonance, which is usu-
ally much farther away from the beam envelope, to form
beam halos. As particles escape from the beam envelope,
the beam intensity inside the envelope becomes smaller and
the equilibrium radius of the beam core shrinks. Thus more
particles will find themselves outside the envelope. As this
process continues because no equilibrium can be reached,
the beam eventually becomes unstable.

It is possible that many collective instabilities can be ex-
plained by the particle-beam nonlinear-dynamics approach.
The wakefields of the beam interacting with the particle
distribution produce parametric resonances and chaotic re-
gions. Instabilities will be the result of particles trapped in-
side these resonance islands. The perturbed bunch structure
further enhances the wakefields to induce these collective
instabilities of the whole beam.

So far, we have been able to explain the results of Gluck-
stern, et. al qualitatively. However, there are differences
quantitatively. To the lowest order, the Vlasov equation
studied by Gluckstern, et. al. does involve the perturbation
force induced by the perturbation distribution via the Pois-
son’s equation. In our nonlinear-dynamics approach, the
particle that escapes from the beam envelope core, always

sees the Coulomb force of the entire unperturbed beam
core, independent of any variation of the core distribution
due to the leakage of particles. This is due to the fact that the
envelope Hamiltonian and the particle Hamiltonian have
been treated separately. This leads to a dependency of the
particle equation of motion on the envelope radius, but not
the dependency of the equation of motion of the envelope
radius on the particle motion. We believe that this is the
reason why we have not been able to compute the growth
rates of the instabilities. However, an improvement of the
present model is nontrivial. This is not the problem of one
particle interacting with a beam core in such a way that the
perturbation of the beam core can be neglected, because a
beam core that is not modified cannot lead to instability of
any form. To treat the problem properly, the Hamiltonian
will have to include undoubtedly all the beam particles in-
teracting with each other, from which the time evolution of
the beam core is to be determined. This appears to be a very
complex problem, and this is exactly why the Vlasov equa-
tion is introduced. The Vlasov equation is a time-dependent
differential equation of the beam core or beam distribution
and requires only the single-particle Hamiltonian. Thus, it
appears that the Vlasov equation will be unnecessary only
when the beam particle distribution does not play an essen-
tial role, for example, in the issues of Robinson instability,
the two-particle strong head-tail instability, the two-particle
chromaticity-driven head-tail instability, etc.
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